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Abstract. We have investigated the coherent phase control on the 3p2 autoionizing state (AIS) resonantly
coupled with the ground state for Mg through a two- and a four-photon transition simultaneously, using a
bichromatic linearly polarized laser field. The frequency is chosen such that the lasers are tunable around
resonance with the transition 3s2(1Se) → 3p2(1Se), which implies ωf = 2.11 eV and ωh = 4.22 eV. We
are interested in the modification of autoionizing (AI) line shape through the relative phase and laser
intensities. A strong phase dependence on the total ionization yield and ionization rate is found. We
also performed a time-dependent calculation which takes into consideration all the resonant states of the
process.

PACS. 32.80.Qk Coherent control of atomic interactions with photons – 32.80.Rm Multiphoton ionization
and excitation to highly excited states (e.g., Rydberg states) – 32.80.Dz Autoionization

1 Introduction

This paper treats a particular aspect of the control of pho-
toabsorption, and in particular, ionization through the rel-
ative phase of two electromagnetic fields acting simulta-
neously on an atomic system. The aspect in question is
the possibility of altering the line shape of an autoion-
izing resonance through such phase control. The general
features of phase control in photoabsorption have been
discussed in the literature extensively [1–7]. The possibil-
ity of altering an autoionizing line shape has also been
discussed [8] to some extent in theoretical work where it
has been shown that one particularly intriguing feature,
depending on parameters, is the possibility of turning off
the transition to the “discrete” or the continuum part of
the resonance [9,10]. To the best of our knowledge, experi-
mental observation of such an effect has not been recorded,
one of the reasons perhaps being the unavailability of ra-
diation sources of intensity and frequency suitable for con-
venient atomic species and resonances.

The case studied in this paper aims at presenting a
quantitative analysis of a situation possibly convenient
for existing laser sources whose potential in phase control
has been tested experimentally. We have thus undertaken
the study of the line shape of the 3p2 (1Se) autoionizing
resonance of atomic magnesium under the simultaneous
excitation by four- and two-photon transitions whose rel-

a Permanent address: Institute for Space Sciences, P.O. Box
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ative phase is varied. This case [11] is somewhat different
from, and theoretically a bit more demanding, than the
more standard scheme of one- and three-photon transi-
tions, which in any case would not be applicable here ow-
ing to the parity of the resonance which is the same as that
of the ground state. In addition, we have found that bound
states in near resonance with one- or three-photon transi-
tions introduce distortions in the wings of the autoionizing
resonance; an effect not a prior obvious but which has to
be taken into account for a realistic assessment of the ob-
servability of the desired feature. Needles to say that a
realistic atomic structure and transitions calculation has
been necessary, whose details are discussed in the sections
that follow.

Lyras and Bachau [8] studied the phase control in two-
and four-photon ionization of the magnesium atom in a
bichromatic field of frequencies ω and 3ω, in the vicinity
of an autoionizing resonance 1De lying above the first two
ionization thresholds. Moreover, they accomplished a full
perturbative, time-independent phase control calculation
in Mg by interfering three- and one-photon transitions to
a single continuum channel 1Po. They studied the depen-
dence of the ionization rate as a function of the relative
phase for different laser intensities, and noticed that the
presence of an intermediate resonance may enhance the
overall ionization signal.

Kylstra et al. [12] have performed a non-perturbative
ab initio one- and two-color calculation of the multiphoton
ionization of magnesium, where the laser frequencies are
chosen such that the initial state of the atom is resonantly
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Fig. 1. Energy diagram of the Mg atom interacting with a
bichromatic electromagnetic field, showing the relevant levels
for the studied process.

coupled to the autoionizing 3p2, 3s3d, and 4s5s resonances
of the atom. Using R-matrix Floquet theory, they stud-
ied single photon ionization from the ground state 3s2
and the 3s3p excited state of magnesium in the vicinity
of the 3p2 AI resonance at non-perturbative laser inten-
sities. A second low-frequency laser couples the 3p2 and
3s3d AI states. This resonant system was studied exper-
imentally and theoretically in the perturbative domain.
Kylstra et al. also investigated the harmonic intensity
regime where the process is no longer perturbative.

In Section 2 we present the basic framework related
to the study of the phase control in the vicinity of an AI
state. In Section 3 we briefly give the ab initio theoreti-
cal approach for the description of the magnesium atomic
structure. Further details can be found in [13–15]. Finally,
in Section 4 we present our results.

2 Basic equations

We study the multiphoton ionization of Mg using a re-
alistic atomic model which describes the time-evolution
of the system, investigating the phase coherent effect on
the 3p2 (1Se) autoionizing state resonantly coupled to the
ground state of Mg, simultaneously through two- and four-
photon transitions, in the weak field regime. The laser fre-
quency is such that the ground state of the atom is near
resonance with the 3s3p (1Po) (E3s3p ≈ 4.34 eV) state of
the Mg atom due to its second harmonic, and with 3s4p
(1Po) (E3s4p ≈ 6.11 eV) due to three-photon absorption
from the fundamental.

We consider the magnesium atom consisting of a
ground state |g〉 ≡ |3s2 1Se〉, an autoionizing state |a〉 ≡
|3p2 1Se〉, and one continuum corresponding to three dif-
ferent values of angular momentum |c1〉 ≡ |3sεs 1Se〉,
|c2〉 = |3sεd 1De〉, and |c3〉 = |3sεg 1Ge〉. The AIS is mod-
eled as a discrete state embedded into the continuum and
coupled to the 1Se continuum through the configuration
interaction.

In Figure 1 we show the energy diagram of the atomic
system interacting with the linearly polarized bichromatic

field:

E(t) = Ef (t) exp (iωf t)+Eh(t) exp (iωht+ iϕ)+c.c., (1)

consisting of a superposition between the fundamental
with frequency ωf and its second harmonic with frequency
ωh = 2ωf . The amplitudes of the two components of the
electric field are Ef (t), Eh(t), and ϕ is the relative phase be-
tween them. The continuum state of energy Eg +4ωf can
be reached by the two interfering paths shown in Figure 1,
namely, the four photon absorption from the fundamental
electromagnetic field (Fig. 1, path (i)), and the two-photon
absorption of its second harmonic (Fig. 1, path (ii)).

There are a few other processes which might affect the
interference process, but for the intensities we consider in
this paper they are not significant, therefore we do not
need to include them in the calculation. For instance, a
three-photon transition with two photons of the funda-
mental and one of the harmonic could lead to the same
final continuum energy. These processes, however, could
only influence the background signal, and not the interfer-
ence process, since the final continuum state belongs either
to a 1Po or to a 1Fo state. We have estimated the transi-
tion amplitudes for these three-photon transitions and for
values of the laser intensities involved in our calculation,
and we found out that the contribution to the ionization
signal is about two orders of magnitude smaller than the
contribution due to the processes presented in Figure 1.
One can therefore conclude that these three-photon pro-
cesses do not affect the process studied here and we neglect
them. The dominant processes are decided by the value of
the frequency and intensities involved in the calculation.
For the same reason, Raman-type processes are ignored
due to the fact that they represent higher-order processes
with respect to the electric field. We have used atomic
units throughout this work. The atomic unit used for the
intensity of laser field is I0 = 14.037× 1016 W/cm2.

A four photon transition from the |3s2 1Se〉 state into
the continuum leads to a final state containing |3sεs 1Se〉,
|3sεd 1De〉, and |3sεg 1Ge〉 partial waves, while a two-
photon transition into the continuum leads only to
|3sεs 1Se〉 and |3sεd 1De〉 partial waves. Thus, only the
transition amplitude to the 1Se and 1De continua is mod-
ulated through the interference with the two-photon am-
plitude. The transition amplitude to the 1Ge contin-
uum remains unaffected by the quantum interference, and
therefore only contributes to the background of the total
ionization signal.

We consider the Schrödinger equation:

i
∂Ψ(t)
∂t

= [Ha +D(t)]Ψ(t), (2)

where Ha represents the atomic Hamiltonian. The atomic
system is treated as a two active electron system: the
atomic core (the nucleus and the 10 inner-shell elec-
trons), and two valence electrons. More details about the
atomic structure calculation are given in the next sec-
tion. Within the semiclassical formalism, the interaction
between the atom and the bichromatic field is described
in the length gauge, and in the dipole approximation by
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D(t) = −(r1 + r2) · E(t), where r1 and r2 represent the
position vectors of the two valence electrons. In order to
describe the dynamics of the system, the time dependent
wavefunction is expanded in terms of the complete set of
states, and then substituted into the Schrödinger equation
following the standard procedure [16]. At t = 0 the sys-
tem is assumed to be in the ground state |g〉, and for time
t > 0 its wave function can be written as:

|ψ(t)〉 = c̃g(t)|g〉 +
3∑

j=1

∫
dEcj c̃j(t)|cj〉, (3)

where c̃g, and c̃j are the probability amplitudes of
states |g〉 and |cj〉, assumed to be eigenstates of the atomic
Hamiltonian Ha with the eigenenergies Eg and Ecj , re-
spectively. The substitution of the wave function equa-
tion (3) into the Schrödinger equation (2) leads to a set
of differential equations for the amplitude coefficients. We
introduce the slowly varying coefficients cg = c̃ge

i(Eg)t and
cj = c̃je

i(Eg+4ωf )t, and, after the adiabatic elimination of
the coefficients for the continuum |cj〉 in the differential
equation for the coefficient of the ground state, using the
rotating wave approximation, we are left with one inde-
pendent equation (for the ground state), and three coupled
differential equations governing the time evolution of the
probability amplitudes as such:

i
∂cg(t)
∂t

=
[
Sg − i

2
γg(ϕ, t)

]
cg(t), (4)

i
∂cj(t, Ecj )

∂t
= cj(t, Ecj )εcj +

[
D(4)

cjg(Ecj , t)

+e−2iϕD(2)
cjg(Ecj , t)

]
cg(t), j = 1, 2, (5)

i
∂c3(t, Ec3)

∂t
= c3(t, Ec3)εc3 +D(4)

c3g(Ec3 , t)cg(t), (6)

where εcj = Ecj − Eg − 4ωf , j = 1, 2, 3.
We used the identity:

lim
η→0+

∫
f(x)

x− x0 + iη
dx = P

∫
f(x)
x− x0

dx− iπf(x0), (7)

where P is the Cauchy principal value integral. Sg repre-
sents the ground state AC-Stark shift induced by the laser
field. Since we are working in the weak laser field regime,
Sg will be neglected.

The quantities D(2)
cjg and D

(4)
cjg are the effective two-

and four-photon transition amplitudes from the ground
state |g〉 to continuum |cj〉:

D(2)
cjg(Ecj , t) =

∑
n

M
(h)
cjn M

(h)
ng

ωng − ωh
, j = 1, 2 (8)

D(4)
cjg(Ecj , t) =

∑
n,l,m

M
(f)
cjn M

(f)
nl M

(f)
lm M

(f)
mg

(ωng − 3ωf)(ωlg − 2ωf)(ωmg − ωf )
,

j = 1, 2, 3, (9)

where the one-photon transition amplitude between the
state |A〉 and |B〉 are written in the length gauge as

M
(h)
AB(t) = −〈A|(r1 + r2) · Eh(t)|B〉, and M

(f)
AB(t) =

−〈A|(r1+r2)·Ef (t)|B〉, respectively, and ωAB = EA−EB .
The quantity γg represents the effective total ioniza-

tion width directly into the continuum, from the ground
state:

γg(ϕ, t) = 2π
2∑

j=1

∣∣∣D̄(4)
gcj

(t) + D̄(2)
gcj

(t)e2iϕ
∣∣∣2 +2π

∣∣∣D̄(4)
gc3

(t)
∣∣∣2 ,

(10)
where the bar over the effective transition ampli-
tudes D̄(2)

gcj , and D̄
(4)
gcj means that they have been calcu-

lated at Ecj = Eg + 4ωf , j = 1, 2, 3.
Firstly, we consider the ionization probability per unit

time P , which is valid for an almost square pulse Ef ≡
Ef(t), and Eh ≡ Eh(t). In this case, the photoionization
line shape is simply obtained in terms of the transition
rate without any time-dependent calculations by assuming
∂tcj(t) = 0. The ionization rate is given as the loss of
population from the ground state:

P = −2Im[i∂tcg(t)c∗g(t)] = γg(ϕ). (11)

It is possible to control different ionization products
through the relative phase of the laser components. The
branching ratio into the j channel is defined as Bj =
Pj/P , where the partial ionization rates Pj are:

Pj = 2π
∣∣∣D̄(4)

gcj
(t) + D̄(2)

gcj
(t)e2iϕ

∣∣∣2 , j = 1, 2 (12)

P3 = 2π
∣∣∣D̄(4)

gc3
(t)

∣∣∣2 . (13)

Our calculation takes into account all the important res-
onances with intermediate atomic states for the process
studied. For the range of intensities where the two- and
four-photon transition amplitudes are of comparable val-
ues, quantum interference effects of the two ionization
channels would determine the modulation of the ioniza-
tion signal. The photoionization signal and the AI 3p2 line
profile can be controlled by varying the relative phase ϕ
between the field components of the laser field E(t).

If we need to explicitly take into account the tem-
poral evolution of the laser pulse, we have to integrate
the time-dependent system of differential equations equa-
tions (4–6), with the initial conditions cg(t = 0) = 1 and
cj(t = 0) = 0, j = 1, 2, 3. The temporal pulse shape of the
laser field is a sine-squared function, Ei(t) = Ei sin2(πt/T ),
where i = f, h. The integration time for this sine squared
shape pulse is taken from t = 0 to t = T = (2π/ωf)n,
with n being the number of laser cycles.

Additional parameters, such as the laser pulse dura-
tion and the temporal overlap of the fundamental and
harmonic pulse, may also control the ionization signal.

The total ionization probability is calculated at the
end of the laser pulse: Pion(T ) = 1 − |cg(T )|2. We have
obtained the value Γ3p2 � 1.76 × 10−3 a.u. for the au-
toionization width of the 3p2 AIS, and the corresponding
life-time of this level is about τ3p2 = 13.75 fs. The total
laser pulse duration used in our calculation is larger than
the life-time of the AIS.
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3 Atomic structure

The Hamiltonian of the magnesium atomic system Ha is
given by:

Ha =
2∑

i=1

[
−1

2
∇2

i + V HF
l (ri)

]
+

1
|r1 − r2| + Vd(r1, r2),

(14)
where V HF

l (ri) is the radial Hartree-Fock potential for
the closed-shell core of magnesium (Mg++), and Vd is a
two-body interaction operator that includes a dielectronic
effective interaction [13,17]. The characteristic feature of
the magnesium atom is the existence of a 3s2 valence shell,
outside a closed-shell core, the excitation of which requires
a much larger amount of energy compared with the first
and second ionization threshold. This allows us to explore
excitation and/or ionization processes of the valence elec-
trons, for a certain range of photon energies, without con-
sidering the closed-shell core-excitation.

At a first stage, we perform a Hartree-Fock calcu-
lation for the closed-shell core of magnesium (Mg++),
thus deriving the effective Hartree-Fock potentials ‘seen’
by the outer electrons. At a second stage, we solve the
Schrödinger equation for the valence electrons through the
configuration interaction (CI) method using the magne-
sium Hamiltonian defined in equation (14). In this case, we
also add a core polarization potential acting on the valence
electrons, the inclusion of which represents the influence
of the core on the two valence electrons in a way very simi-
lar to that described in [13,14]. This core-polarization po-
tential has the form αs

{
1 − exp[−(r/rl)6]

}
/r4, where αs

is the static polarizability of the doubly-ionized Mg, and
rl is the cut-off radii, for the various partial waves l =
0, 1, 2, ... [17].

Having produced the Mg+ one-electron radial eigen-
states Pnl(r) for each partial wave l = 0, 1, 2, ..., we solve
the two-electron Schrödinger equation:

HaΨ
Λ(r1, r2) = EΨΛ(r1, r2), (15)

by expanding the two-electron eigenstates ΨΛ(r1, r2) on
the basis of LS-uncoupled two-electron antisymmetrized
orbitals ΦΛ

nln′l′(r1, r2), namely [14]:

ΨΛ(r1, r2;Ei) =
∑

nln′l′
Cnln′l′(Ei)ΦΛ

nln′l′(r1, r2), (16)

ΦΛ
nln′l′(r1,r2) = A12

Pnl(r1)
r1

Pn′l′(r2)
r2

YLML(r̂1, r̂2; l, l′),

(17)

where Λ = (LML), and A12 is the antisymmetrization
operator which ensures that the total wave function is an-
tisymmetric with respect to interchange of the space co-
ordinates of the two electrons. Assuming the magnesium
is initially in its ground state |3s2 1Se〉, and that the tran-
sitions with a linearly polarized light are well described in
the dipole approximation, we only need to construct the
singlet states with S = 0 and ML = 0.

We force the wavefunction to be zero at the bound-
aries by selecting the basis functions Pnl(r), and Pn′l′(r)

to be the one-electron radial solutions of Mg+ which, by
construction vanish at the boundaries. The radial func-
tions Pnl(r) are expanded in a B-spline basis of order n,
Pnl(r) =

∑
i biBi(r), i = 1, 2, ..., N , which transforms

the one-electron Schrödinger equation for the Mg+ or-
bitals into a system of matrix equations for the coeffi-
cients bi [18].

Substitution of the two electron wavefunction equa-
tion (17) into the Schrödinger equation (Eq. (15)), leads
to a generalized eigenvalue matrix equation, the diagonal-
ization of which gives the coefficients Cnln′l′(Ei) for each
discrete eigenvalue Ei [14,15]. This choice of the basis
functions ΦΛ

nln′l′(r1, r2) (constructed from the radial or-
bitals Pnl(r)), thus leads to a discretized continuum spec-
trum for the magnesium atom with a density of states
basically determined from the box radius R.

Having obtained the two-electron wavefunctions
ΦΛ

nln′l′ , we calculate the effective two- and four-photon
transition amplitudes equations (8, 9) within the low-
est order-perturbation theory (LOPT), as well as the
corresponding partial generalizedN -photon cross-sections
leading to the |cj〉 continuum:

σ(N)
gcj

(ω) = 2π(2πα)NωN
∣∣∣M(N)

gcj
(ω)

∣∣∣2 , (18)

where ω represents the laser frequency, α the fine struc-
ture constant, and j = 1, 2 for N = 2 (two-photon
cross-section) and j = 1, 2, 3 for N = 4 (four-photon
cross-section). The effective two- and four-photons transi-
tion amplitudes are calculated, D(N)

gcj (ω) = IN/2M(N)
gcj (ω),

where I represents the laser field intensity. We have em-
ployed a box with the radius close to R ≈ 300 a.u., 602 B-
spline functions of order nine, and a total number of an-
gular momenta up to L = 4.

4 Results and discussion

In the first part of this section we present a few results
in the weak field limit for a time-independent laser pulse,
in which case the ionization rate approximation is valid,
and the photoionization signal is well described by the
ionization rate formula (Eq. (11)).

Figure 2 shows the partial two-photon ionization cross-
sections from the ground state of the magnesium atom
leading to the 1Se (full curve) and 1De continuum (dot-
ted curve), as a function of the photon energy. Our results
presented in Figure 2 are in agreement with the results
published in the literature by Chang and Tang [19] and
Kylstra et al. [12]. The four-photon partial cross-sections
from the ground state leading to the 1Se (full curve), 1De

(dotted curve), and 1Ge (dashed curve) continua are pre-
sented in Figure 3. The two- and four-photon partial cross-
sections were calculated using equation (18).

The total ionization rate for the simultaneous two- and
four-photon ionization from the ground state of Mg is plot-
ted as a function of the fundamental laser frequency in
Figure 4, for a relative phase ϕ = 0◦ (dashed line), 30◦
(dotted line), and 90◦ (full line). The laser field intensities
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Fig. 2. Two-photon ionization cross-section σ(2), leading to
1Se (full line) and 1De (dotted line) continua from the ground
state of Mg, as a function of the photoelectron energy.
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Fig. 3. Four-photon generalized ionization cross-section σ(4),
leading to 1Se (full line), 1De (dotted line) and 1Ge (dashed
line) continua from the ground state of Mg, as a function of
the photoelectron energy.

are If = 2 × 1011 W/cm2 and Ih = 4.13 × 107 W/cm2.
If the two fields are in phase, there is destructive interfer-
ence between the two different ionization channels illus-
trated in Figure 1, while there is constructive interference
at ϕ = 90◦. This behavior of the ionization rate is due
to the relative sign of the effective two- and four-photon
transition amplitudes; specifically, for a fundamental laser
frequency at 2.08 eV < ωf < 2.15 eV, the effective two-
and four-photon transition amplitudes from the ground
state into the 1Se and 1De continua, respectively, have
opposite signs. When the laser frequency is tuned near
the resonant state 3s3p (ωh ≈ 4.3 eV) no phase effects
are observed, since the ionization through two harmonic
photon absorption becomes dominant over the four pho-
ton absorption, Figure 1(ii), and no interference process
exists. Where the laser is tuned around the 3s4p state
(ωf ≈ 2.02 eV), channel (i) of Figure 1 is dominant.

In order to have a better view of the interference
process between the two ionization channels illustrated
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ω

f
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Fig. 4. The ionization rate of the ground state of Mg as a func-
tion of the fundamental laser frequency for ϕ = 0◦ (dashed
line), 30◦ (dotted line), and 90◦ (full line). The peak occur-
ring at 2.02 eV corresponds to the 3s4p level, and the peak
at 2.15 eV corresponds to the 3s3p level. The fundamental
and harmonic laser intensity are If = 2 × 1011 W/cm2 and
Ih = 4.13 × 107 W/cm2, respectively.

in Figure 1, in Figure 5 we present the partial ioniza-
tion rate into the 1Se (dot-dashed curve), 1De (dotted
curve) and 1Ge continua (dashed curve). The full curve
represents the total ionization rate when the fields are in
phase, panel (a), and when the relative phase is ϕ = 90◦,
panel (b). We observe that the AI 3p2 line profile for the
two- and four-photon process is not symmetric due to the
one- and three-photon transitions to the 3s3p and 3s4p
near resonance states.

Figure 6a shows the branching ratios function of the
fundamental laser frequency at ϕ = 0◦, and in panel (b)
for ϕ = 90◦ with the same conditions as in Figure 4.
The branching ratio into the 1Se continuum is represented
by the dot-dashed curve, into the 1De continuum by the
dotted curve and into the 1Ge continuum by the dashed
curve. As shown in panel (a), at ϕ = 0◦ for laser fre-
quencies tuned around 3p2 AIS, the ionization rate into
the 1Ge continuum is enhanced since the laser intensities
where chosen such that the two- and four-photon transi-
tion amplitudes from the ground state into the 1Se contin-
uum cancel each other. On the other hand, at ϕ = 90◦ in
panel (b) there is an enhancement of the ionization signal
into the 1Se and 1De continua. This suggests that by a
judicious choice of the laser intensities, it might be pos-
sible to arrange the maximum of one ionization product
to coincide with the minimum of the others, and thus to
control different ionization products.

The modulation of the ionization rate as a function
of the relative phase for a simultaneous two- and four-
photon ionization from the ground state of Mg to the
3p2(1Se) AIS is depicted in Figure 7, for ωf = 2.11 eV
with the same laser intensities as in Figure 4. The full
curve represents the total ionization rate, the dot-dashed
curve is the contribution to ionization into the 1Se contin-
uum, and the dotted curve the contribution coming from
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Fig. 5. The total and the partial ionization rates of the ground
state of Mg as a function of the fundamental laser frequency.
In panel (a) the relative phase between field components is 0◦,
and is 90◦ in panel (b). The partial ionization rate into the 1Se

continuum is represented by the dot-dashed curve, into the 1De

continuum by the dotted curve and into the 1Ge continuum by
the dashed curve. The full line represents the total ionization
rate. The laser parameters are the same as in Figure 4.

the 1De continuum. The ionization rate into the 1Ge con-
tinuum (dashed curve) is a flat line and contributes to
the background of the ionization rate, which it cannot
be neglected when the relative phase between the laser
field components is close to kπ. The ionization rate into
the 1Se at ϕ = kπ is zero since the laser intensities were
chosen such that the effective transition amplitudes for
two- and four-photon absorption into the 1Se continuum
at ωf = 2.11 eV are almost equal, and cancel each other.

We can analyze the ionization rate as a function of
the harmonic intensity for fixed frequency and intensity
of the fundamental. In Figure 8 we show the depth of
ionization (Pmax − Pmin)/ 1

2 (Pmax + Pmin) as a function
of the harmonic intensity. Pmax represents the maximal
value of the ionization rate when ϕ = 90◦, and Pmin is
the minimal value of the ionization rate when the two
laser components are in phase ϕ = 0◦; the fundamental
photon energy is ωf = 2.11 eV. As can be seen, an efficient
coherent control in the weak field limit is obtained at If =
2× 1011 W/cm2 for the harmonic intensity in the interval
Ih ∈ (2 × 107 W/cm2, 2 × 108 W/cm2). Of course, good
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Fig. 6. Branching ratios as a function of the fundamental laser
frequency at ϕ = 0◦ in panel (a), and at ϕ = 90◦ in panel (b).
The branching ratio into the 1Se continuum is represented by
the dot-dashed curve, into the 1De continuum by the dotted
curve, and into the 1Ge continuum by the dashed curve. The
laser parameters are the same as in Figure 4.
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Fig. 7. Ionization rate vs. the relative phase between laser
components. The laser intensities are the same as in Figure 4.
The partial ionization rate into the 1Se continuum is repre-
sented by the dot-dashed curve, into the 1De continuum by
the dotted curve and into the 1Ge continuum by the dashed
curve. The full line represents the total ionization rate.
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Fig. 8. The depth of modulation as a function of the har-
monic intensity. The fundamental laser intensity is If = 2 ×
1011 W/cm2.
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Fig. 9. The ionization yield of the ground state of Mg around
the 3p2 AIS function of the fundamental laser frequency for
ϕ = 0◦ (dashed line), 30◦ (dotted line), and 90◦ (full line).
The fundamental and harmonic peak laser intensity are If =
2 × 1011 W/cm2 and Ih = 5 × 107 W/cm2, respectively. The
laser pulse shape is sinusoidal with a total duration of 1 ps.

coherent control can be obtained as well for other pairs of
laser intensities.

When considering a temporal dependence of the laser
pulse shape, the total ionization probability is obtained
by numerically integrating the system of differential equa-
tions for the amplitude coefficients in equations (4–6).
In Figure 9 we plot the ionization yield for field intensi-
ties where the depth of modulation has a maximal value:
If = 2 × 1011 W/cm2 and Ih = 5 × 107 W/cm2. The ion-
ization yield for the relative phase ϕ = 0◦ is described by
the dashed curve, for ϕ = 30◦ by the dotted curve, and
for ϕ = 90◦ by the full curve. The laser pulse shape is
sinusoidal with a total duration of 1 ps (n = 500).

Figures 4–7 and 9 clearly show that the AI line shape
of 3p2 is significantly changed by the relative phase ϕ
of the laser components. The corresponding 3p2 peak at
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Fig. 10. The ionization yield at ϕ = 0◦ as a function of the
fundamental laser frequency (full curve). The dotted curve rep-
resents the ionization yield for the two-photon absorption, and
the dashed one corresponds to the four-photon absorption. The
peak laser intensities are the same as in Figure 9.

ωf = 2.11 eV is diminished the most whenever the two
fields are in or out of phase due to the destructive quan-
tum interference between the two different channels, and
enhanced the most whenever ϕ = (2k + 1)π/2 due to the
constructive interference of the two ionization pathways.
The maximum and the minimum of the ionization signal
differ by more than one order of magnitude.

In order to better illustrate the destructive interference
between the two- and four-photon ionization processes, in
Figure 10 we plot the ionization yield as a function of the
fundamental laser frequency at ϕ = 0◦, and the same laser
intensities as in Figure 9. The laser pulse shape is sinu-
soidal with a total duration of about 1 ps. The dashed line
represents the ionization rate corresponding to the four-
photon absorption from the fundamental, and the dotted
line describes the ionization yield due to the two-photon
absorption of its second harmonic. The full line is the total
ionization yield resulting from the destructive interference
of these two processes.

5 Conclusion

In this paper, we have investigated the phase coherent
effect of the 3p2 (1Se) autoionizing state resonantly cou-
pled to the ground state of a Mg atom in the presence of
a bichromatic laser field of frequencies ωf and 2ωf . The
transition amplitudes have been evaluated using a realis-
tic atomic structure calculation. The motivation for this
study was the investigation of the possibility of achieving
coherent control of the photoelectron current and changes
in the autoionization line shape. We have calculated and
presented, for the first time (to the best of our knowl-
edge), four-photon partial transition amplitudes for the
Mg atomic system, and the corresponding partial ioniza-
tion cross-sections. We have found out that the near reso-
nance, double excited states 3s3p (1Po) and 3s4p (1Po)
of magnesium introduce distortions in the left and in
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the right side of the autoionizing resonance, and enhance
the overall ionization signal. A reliable study of the 3p2

line shape through the density matrix or resolvent op-
erator method should take into consideration these two
intermediate resonances, and the energy dependence of
the respective transition amplitudes and Rabi frequencies.
The relative phase ϕ between the two components of the
bichromatic laser field modulates the quantum interfer-
ence between the two ionization channels: four-photon ab-
sorption from the fundamental laser field and two-photon
absorption of its second harmonic.
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